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Water covers over 70% of the earth’s surface and is crucial for the survival of most living organisms. Rivers, in 

particular, are essential for the environment, social well-being, and economic growth. Despite being abundant, the 

availability of drinkable water is limited. A variety of factors, including urbanization, agriculture, and industrial 

activities, can impact the quality of river water, making real-time monitoring crucial for ensuring its safety. In this 

context, anomalies are generally defined as rare events, or observations that differ significantly from the mean 

behavior, therefore their correct detection can help protect river systems and those who depend on them. 

Machine learning (ML) is an essential component of artificial intelligence that enables a computer system 

to learn from data and use that knowledge to categorize or forecast future events. The methods and techniques 

employed in machine learning rely on complex mathematical models that can detect patterns from vast sets of data 

features or time-series. In this work we assess the combination of several data imputation methods and real-time 

incremental machine learning models for the reliable detection of anomalous water quality events. 

The data studied, which spans from January 

2005 to December 2022, belongs to 8 environmentally 

sensitive points in the Ebro River. This information was 

collected systematically by the two main control and 

monitoring networks in the Spanish river basins —SAIH 

(Automatic Hydrological Information Systems) and 

SAICA (Automatic Water Quality Information System) 

networks—. Both networks record data points of 

different variables every 15 minutes. While the SAIH 

network works with hydrological variables —

precipitation, flow, surface water level—, the SAICA 

counterpart collects information on physicochemical 

parameters, which are indicators of water quality— 

water temperature, pH, dissolved oxygen, electrical 

conductivity, ammonium levels, and turbidity—. These data can provide valuable insights into the behaviour of 

the environment and early warning systems. However, the relationships between the parameters that are correlated 

to anomalies are not fully understood. 

Anomalies are generally defined as rare events, or observations that differ significantly from the mean 

behaviour. In the case of water quality and hydrological variables, examples of anomalies include pollution events, 

or drastic natural changes resulting into a decrease in water quality and potential risks to aquatic life and public 

health. Given the availability of correctly labelled anomalies in a dataset would allow for a supervised learning 

approach to be used. Formally, a function of 𝑓: 𝑋 → 𝑌 is learned, where 𝑋 is a space of inputs and 𝑌 is the space 

of outputs that predicts on instances drawn from the joint probability distribution 𝑝(𝑥, 𝑦) on 𝑋 × 𝑌. In the training 

phase, the model has access to a set of samples (𝑥1, 𝑦1), … (𝑥𝑛 , 𝑦𝑛) and attempts to minimize a loss function given 

by 𝑉: 𝑌 × 𝑌 → ℝ, such that 𝑉(𝑓(𝑥), 𝑦) measures the difference between the predicted value 𝑓(𝑥) and the true 

value 𝑦. This is defined in Equation 1: 

 

𝐼[𝑓] = 𝔼[𝑉(𝑓(𝑥), 𝑦)] = ∫ 𝑉(𝑓(𝑥), 𝑦)𝑑𝑝(𝑥, 𝑦) (1) 

 

With an incremental, or online ML approach the corresponding model continually learns the best 

predictor 𝑓𝑡 based upon new input (𝑥𝑡+1, 𝑦𝑡+1) in the timeseries data; thereby updating model parameters. 

Recently, specific incremental ML learning libraries have become available, such as River (Montiel et al., 2021) 

that implement this paradigm. A key feature of such approaches is that it enables the models to adapt to drift of 

the underlying probability distributions without the need for ad-hoc retraining algorithms.  

Data imputation has been performed with the KNNImpute algorithm (Troyanskaya et al., 2001), linear 

regression (Rubin, 1987; Van Buuren, 2007), missForest (Stekhoven & Bühlmann, 2012), and by pure deletion of 

those instances with one or more missing variables. As for the incremental ML models implemented we have 

Figure 1. Ebro river basin and the SAICA and SAIH stations. 

mailto:xurxo.rigueira@uvigo.es


 

 

compared the performance of logistic regression, Hoeffding tree, half space trees (Tan et al., 2011), an online 

variant of Isolation Forests (Liu et al., 2008) a stochastic implementation of the one-class SVM algorithm, 

Aggregated Mondrian Forest (AGF) (Mourtada et al., 2019), Adaptative Random Forest (ARF) (Gomes et al., 

2017), Extremely Fast Decision Tree (Manapragada et al., 2018), and Stochastic Gradient Tree (SGT) (Gouk et 

al., 2019). Concept drift was detected with ADaptive WINdowing (ADWIN) (Bifet & Gavaldà, 2007). 

  

The results show that the best-performing combination is the imputation of the missing values with missForest, 

which recovers 21% of the data, and logistic regression or ARF with an accuracy over 90%. Consequently, this 

research demonstrates the feasibility of real-time incremental machine learning for anomaly detection in water 

quality and hydrological labeled data. The continuous learning approach allow the model to adapt quickly to any 

changing conditions in data over time, making deployment and maintenance straightforward. As such system 

offers a valuable tool for monitoring and managing freshwater ecosystems in real-time. Lastly, future research will 

focus on studying the time dependency of the anomalies and the implementation of more complex models. 
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Figure 2. Multivariate representation of two different anomalies showing a complex time structure. 




